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The oscillatory behaviour of neck propagation during cold drawing of polymer films has been studied 
numerically. Previous calculations based on Barenblatt's model considering the temperature rise at the 
neck have been refined by introducing heat diffusion and the consequent temperature distribution in the 
film. Period doubling of the oscillation and other phenomena that were observed experimentally and 
remained to be explained have been produced by the refined model. 
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INTRODUCTION 

The plastic deformation of polymer materials often starts 
from a localized deformation, so-called necking, and is 
followed by the propagation of the neck. 

Neck propagation such as that of amorphous 
poly(ethylene terephthalate) (PET) films sometimes 
shows the following unusual behaviours. Under the 
condition of constant drawing rate, the propagation 
becomes unstable within a certain range of drawing rates, 
and the required stress and the velocity of neck 
propagation begin to oscillate (Figures 1 and 2) 1. By 
constant-load drawing, the velocity of neck propagation 
shows discontinuities and hysteresis ('a' and 'c' in Figure 
3), missing the velocity range of oscillatory neck 
propagation observed under constant drawing rate ('b' 
in Figure 2) 2'3 . 

In a previous paper ~, the oscillation and the stability 
of neck propagation were studied on the basis of 
Barenblatt's model 5, describing neck propagation as a 
non-isothermal process. Before introducing Barenblatt's 
model, we briefly review oscillatory neck propagation in 
the following. 

Oscillatory neck propagation 
The oscillating behaviour is mainly observed in the 

region of da/d V< 0 on a plot of required stress tr against 
drawing rate V (Figure 2), i.e. the region where the 
required stress becomes smaller as the drawing rate 
increases. It is noted that, even in this region, neck 
propagation is stable in the early stage of drawing 
(Figure 1). 

During the oscillation at constant drawing rate, the 
following occurs repeatedly: elastic deformation of the 
transformed and untransformed parts of the sample with 
almost zero velocity of neck propagation and then quick 
propagation of the neck with elastic shrinkage of those 
transformed and untransformed parts. This means that 
the elastic deformation of the sample is coupled with a 
certain mechanism of neck propagation. 
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The period of oscillation becomes longer with the 
progress of drawing; the period is determined by the 
elastic compliance of the whole system, which is an 
increasing function of the total length of the sample. 

The amplitude of oscillation changes with drawing rate 
and becomes smaller as the rate increases (Figure 2). 

Concerning the temperature rise considered in 
Barenblatt's model, it is experimentally confirmed that 
the surface temperature at the neck rises up to 95°C 6. 
On the other hand, if the sample is immersed in a liquid, 
wrapped by an aluminium foil or blown to remove the 
heat produced by the work of drawing at the neck, the 
oscillation disappears. Under such a condition, the plot 
of stress vs. logarithm of drawing rate shifts upwards ('d' 
in Figure 2) and lies on a straight line extrapolated from 
the values at slow drawing rates ('a' in Figure 2); the linear 
dependence of a on log V indicates a kinetics controlled 
by the rate process of Eyring 7. 

Barenblatt' s model 
Barenblatt's model regards the process of neck 

propagation as a non-isothermal process caused by a 
temperature rise at the neck. The process comprises a 
dynamical system in a phase space of a, v and T. The 
oscillatory neck propagation is explained as a self-excited 
oscillation expressed by a limit cycle in the phase space. 

In the model, the relationship between stress a and 
velocity v is assumed to be dependent only upon the 
temperature T at the neck and hence the physical state 
of neck propagation is expressed by those three 
parameters. The relationship between those parameters 
is represented by a function: 

f(a, v, T)=O (1) 

which gives the physically allowed set of variables a, v 
and T located on a surface in three-dimensional space 
(a, v, T). The simplest form of function will be given by 
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Figure I Typical load-extension curve of oscillatory neck propagation 
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Figure 2 Plots of stress against deformation rate obtained experiment- 
ally*. The PET films are 300 #m thick and 3 mm wide. Drawing 
conditions: (O) constant load in air; (O) constant load in water; (A) 
constant speed in water; (E]) constant speed in air; (V) constant load 
in air. The bars represent the amplitude of stress oscillation 

Eyring's rate process7: 

AF a(~ ~ 
v = Vo e x p ( - - ~ - ~ ) [ e x p ( ~ ) - -  exp(--  k-~) 1 (2) 

where AF and ct are the activation free energy and volume 
for the process and k is the Boltzmann constant. 

On the other hand, the following equation gives the 
heat balance at the neck: 

dT 
pCp~o ~ + pCpS lv (T -  To) = - f l S ( T -  To) + Slav (3) 

where T o represents the ambient temperature, p and Cp 
the density and specific heat of the material, fl the 
heat-transfer coefficient, $1 the original cross-sectional 
area of the sample, and 09 and S the volume and surface 
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area of the neck region. The second term on the left-hand 
side of equation (3) represents the heat removed from the 
neck region by the propagation of the neck. The first 
term on the right-hand side represents the heat 
transferred from the neck region to the surroundings, and 
the last term gives the heat produced by the work done 
at the neck per unit time 4 . 

The stationary solution of equations (2) and (3) 
(dT/dt=O) gives a, v and T of steady neck propagation 
(Figure 4). The curve shown in Figure 4 actually 
reproduces the N-shaped dependence of stress on 
drawing rate 4. 

For drawing at constant speed V, the process must 
satisfy the following additional condition: 

v + 2 da/dt  = V (4) 

where ). is the elastic compliance of the whole system, 
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Figure 3 Schematic plot of deformation rate vs. stress for drawing at 
constant load 3 
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Figure 4 Plots of the stationary solutions of equations 2), (3) and (4) 4. 
The bars represent the amplitude of stress oscillation 
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Figure 5 Typical oscillatory behaviour in stress observed experiment- 
ally. The PET films are 1 mm thick and 3 mm wide. The early stage 
of stress oscillation is shown in (a) and the later one in (b). The change 
in the period and the occurrence of period doubling are clearly seen 

which gradually becomes large as the sample becomes 
elongated but, in the time interval of several periods of 
oscillation, can be regarded as a constant parameter 
because 2 increases very slowly with the elongation of 
the sample s. The stress a in this equation is the apparent 
stress, namely tr=P/S~, where P is the applied load. 
Equation (4) means that the rate of total deformation is 
given by the sum of the rates of neck propagation, v, and 
the elastic deformation of the sample, 2 dtr/dt. 

By numerical calculations of the differential equations 
(2), (3) and (4), it has been confirmed that the steady-state 
solution shown in Figure 4 becomes unstable in the region 
'b' of Figure 4 (dtr/dV<O) for 2 larger than a critical 
value 2 c, namely at the later stage of neck propagation, 
and then oscillatory neck propagation appears 4. 

Unsolved questions 
Several important features of oscillatory neck propaga- 

tion still remain unexplained by Barenblatt's original 
model s and the numerical calculations4: 

(i) In Figure 4, the amplitude of stress oscillation 
obtained from the numerical calculations is shown 
against drawing rate. The amplitude was almost 
independent of the drawing rate and hence equations (2), 
(3) and (4) did not reproduce the experimentally observed 
dependence of amplitude on drawing rate (bars in 
Figure 2). 

(ii) As shown in Figure 2, stress oscillation appears not 
only in the region 'b' (dtr/dV<O) but also in 'c'. However, 
the detailed analysis of equations (2), (3) and (4) showed 
that neck propagation in the region of dtr /dV>0 must 
be stable 4. 

(iii) At the later stage of drawing, the period of 
oscillation sometimes becomes doubled, as shown in 
Figure 5. Such a period doubling cannot be expected from 
the dynamical system of equations (2), (3) and (4), where 
the number of independent variables is only two s . 

(iv) Calculation results shown in Figure 4 could not 
reproduce the sharp rise in stress against drawing rate 
in the region 'c' of Figure 2. 

The objective of the present paper is to investigate 
possible solutions to the above difficulties in the original 
Barenblatt model 5 and the detailed analysis 4. Instead of 
equation (3) considering the temperature rise only at the 
neck, we utilize the following thermal diffusion equation: 

PCp--~+pCpv-~x=-h + (T -To)+k  d2T 
dx 2 

+ S~ av for 0 ~< x ~< Ax in the neck region (5) 
~o 

considering the distribution of temperature, T(x, t), in the 
sample. In equation (5), the x axis is taken along the 
elongation direction of the sample with the origin fixed 
at the neck, k and h represent the thermal conductivity 
of the material and the heat transfer coefficient of the 
surrounding air, and a and b are the width and thickness 
of the sample. In the neck region (0 ~< x ~< Ax), we add 
the contribution of the heat production by the work of 
drawing, S l trV / O~. 

NUMERICAL CALCULATION 

We try to obtain the numerical solutions to equations 
(2), (4) and (5). Employing equation (2) means that the 
relationship between stress, neck propagation velocity 
and temperature is expressed by Eyring's rate process 
(equation (2)). Such a dependence is seen experimentally 2'4 
and will provide a reasonable dependence between them. 

For the parameters in equation (2), we use the same 
values as those in the previous paper4: Vo =2.25 x 1072 
cm s -x, AF=8 .17x  10 -~2 erg and ~=3.39 x 10 -2t cm 3. 
The following values of the physical parameters in 
equation (5) were taken from the literature9: p =  1.34 
gcm -a, C _ = l . 1 2 x l 0 7 e r g g  - 1 K  -1, k = l . 5 0 x l 0 4 e r g  

- 1  - 1  J '  - 1  X 3 m-2 - I  K-1.  cm s K and h=2.33 10 e r g c  s 
Concerning the size of sample, a, b and S 1 (-ab), used 
in equation (5), those values were taken from the 
experimental values as a = 0 .3 c m and b=0.1 cm; the 
dimensions of the sample are not typical of those in 
the experiments, but with such thick films self-oscillation 
occurs more easily. 

We utilize a finite difference method to solve equations 
(2), (4) and (5). The mesh size, Ax, is fixed at 0.005 cm. 
The length of the neck region was assumed to be equal 
to the single mesh size. The volume of the neck region 
is expressed by the mesh size as o~ = AxS1; in the present 
calculations, we neglect the change in the size of sample 
by deformation at the neck, as we will discuss later. This 
choice of the volume of the neck region has an influence 
on the degree of temperature rise at the neck because the 
heat production term (the last term) in equation (5) is 
divided by the volume, o9. In order to raise the 
temperature to 60°C (To=20°C) at high drawing rates 
(Figure 9), this term is multiplied by a factor 2.5 in the 
following calculations. 

We choose the explicit (Euler forward) scheme of 
the finite difference method and make the following 
restrictions on the values of At in order to assure 
the consistency of the scheme: At <<. O.05(Ax)2/x, 
At ~< 0.05 Ax/v(t) and 0.99 <~ v(t + At)Iv(t) ~< 1.01, where x 
(-k/pCp) represents the thermal diffusivity. The last 
condition is required because the neck propagation 
velocity changes exponentially during the oscillation 
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Figure 6 Plots of calculated tr as a function of time for drawing at 
constant  speed. The rate of drawing is 0.014 cm s -  1. The parameter  2 
takes the values of 0.001, 0.03 and 0.06 cm M P a -  1 for (a), (b) and (c) 
respectively 
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Figure 7 Calculated temperature profile along the elongation 
direction during oscillation at the time denoted by O,  V1, O and A in 
Figure 6b 

process. In order to approximate the term representing 
the thermal convection, v dT/dx, in equation (5), we 
mainly take the first-order upwinding method; with a 
higher-order approximation of third-order upwinding, 
there were no essential differences in the behaviours. The 
number of meshes was taken to be sufficiently large not 
to affect the results: in most cases, - 1 5 0 A x  ~< x ~< 3 0 0 A x .  

In each calculation, the compliance of the system, 2, 
was fixed because of its slow variation during the actual 
drawing process. We examine the development of neck 
propagation, namely the change in a, v and T, for different 
2 and V by solving equations (2), (4) and (5) numerically. 
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RESULTS 

The following results were obtained from the numerical 
calculations of equations (2), (4) and (5) for drawing at 
constant velocity. 

Figure 6 shows the change in stress with time for 
different values of 2. For small 2 (Figure 6a), the neck 
propagation is stable and the stress oscillation due to an 
initial disturbance is relaxed to the steady state. For 
sufficiently large 2 (Figure 6b), stable oscillation appears. 
Figure 7 shows the temperature distribution in the sample 
at the time indicated by the symbols on the curve in 
Figure 6b. For still larger 2 (Figure 6c), the period 
doubling of oscillation can be seen. Figure 8 shows the 
changes in T, v and a during the oscillation with double 
period. Figure 9 shows the plots of stress and temperature 
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Figure $ Plots of calculated tr, log v and T as functions of time. The 
rate of drawing is 0.014 cm s -  1 and the parameter  2 is 0.06 cm M P a -  1: 
the same condition as in Figure 6c 
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Figure 9 Plots of the stationary solutions to equations (2), (4) and (5). 
The bars represent the amplitude of stress oscillation 
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against drawing velocity under steady state, namely for 
2 small enough to ensure stable neck propagation. 

DISCUSSION 

Concerning the unsolved questions given in the above, 
we could have reproduced the experimental results 
pointed out in questions (i)-(iii) by the present numerical 
calculations of the differential equations (2), (4) and (5). 

(i) Amplitude of stress oscillation was dependent on 
drawing rate (Figure 9). 

(ii) Stress oscillation appeared in the region of 
da/dV>O, namely 'c' in Figure 9. 

(iii) Period doubling of stress oscillation occurred for 
large 2 ('c' in Figure 6). 

In the present numerical calculations, we have utilized 
the thermal diffusion equation (5) instead of equation (3), 
considering the temperature rise only at the neck region. 
Owing to the diffusion, the heat produced at the neck is 
conducted to the untransformed region and raises the 
temperature there (Figure 7). This temperature rise will 
be responsible for the above results, which are different 
from the previous ones obtained from equation (3). 

Regarding the steep rise in stress against drawing 
velocity in the region 'c' of Figure 2, such a strong 
dependence could not be reproduced by the present 
calculations (Figure 9). It is possible that Eyring's rate 
process employed in the present calculations, equation 
(2), is not applicable to neck propagation at high 
temperatures. But it is more probable that the temperature 
at the neck has been lowered as the drawing rate becomes 
faster in the region 'c' of Figure 2 due to the fast removal 
of the produced heat from the neck region by its fast 
propagation. The experimentally observed steep rise in 
stress in the region 'c' of Figure 2 might have been caused 
by this effect, though such a decrease in temperature did 
not occur in the present calculations. We need 
experimental and theoretical investigations on this point. 

It is a well known fact that crystallization of 
amorphous PET films follows necking at high drawing 
rates during the oscillation 1. It was postulated that 
crystallization makes an essential contribution to the 
occurrence of hysteresis and oscillation 2. But crystallization 
actually occurs after deformation apart from the neck 
region 1° and hence it will be a subsidiary effect of the 
temperature rise caused by drawing. For simplicity, we 
have neglected the effect of crystallization in the present 
calculations, though crystallization might have some 
influence on the process as an additional heat source. 

Lastly, it should be noted that the differential equation 
(5) used in the present calculations does not fully 
correspond to the actual neck propagation process. In 
the actual process, neck propagation is followed by 
elongation of the sample and shrinkage of the cross- 
sectional area, namely the elongation of the positive x 
axis and the change in a and b in the equation. We have 
taken the present form of the differential equation (5) 
because of its simplicity. Since we have not yet understood 

the condition for the occurrence of period doubling in 
the oscillation, we needed to reduce the number of 
controlling parameters in the calculations. 

Probably, because of the simplification, the resultant 
period of oscillation (Figure 6) became much longer than 
the experimental period (Figure 5). The period of 
self-oscillation is determined not only by the compliance 
but also by the drawing rate. It can be said that the 
period becomes longer by slowing down the drawing rate, 
though the analytical expression of the oscillation period 
has not been obtained. In the present calculation, we 
have utilized the physical constants of the actual PET 
film, but the range of drawing rate, in which oscillation 
occurs, was lower than the previous one by more than 
one order of magnitude: region 'b' in Figures 4 and 9. 
The slow drawing rates in the region 'b' of Figure 9 are 
directly responsible for the long oscillation period 
obtained in the present numerical calculations. Here, 
lowering the range 'b' is due to the temperature rise at 
the neck for slower drawing rates in the present model 
than in the previous one. This could be due to the 
simplification in the model, as mentioned above. But since 
the heat removed from the neck region is stored in the 
necked and unnecked part of the sample in the present 
calculation (Figure 7), it is also probable that the removed 
heat contributes to the temperature rise at the neck 
region; such an effect has been neglected in Barenblatt's 
original model. 

For those reasons, we should consider the success of 
the present analysis in a restricted sense. Irrespective of 
such a restriction, the basic feature of the present analysis 
provides a reasonable explanation of the process and will 
remain correct. We certainly need further refinements to 
the model. 
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